3.7.31 \(\int \frac {\sqrt {x}}{\sqrt {2-b x}} \, dx\) [631]

Optimal. Leaf size=45 \[ -\frac {\sqrt {x} \sqrt {2-b x}}{b}+\frac {2 \sin ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {2}}\right )}{b^{3/2}} \]

[Out]

2*arcsin(1/2*b^(1/2)*x^(1/2)*2^(1/2))/b^(3/2)-x^(1/2)*(-b*x+2)^(1/2)/b

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {52, 56, 222} \begin {gather*} \frac {2 \text {ArcSin}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {2}}\right )}{b^{3/2}}-\frac {\sqrt {x} \sqrt {2-b x}}{b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[x]/Sqrt[2 - b*x],x]

[Out]

-((Sqrt[x]*Sqrt[2 - b*x])/b) + (2*ArcSin[(Sqrt[b]*Sqrt[x])/Sqrt[2]])/b^(3/2)

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 56

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin {align*} \int \frac {\sqrt {x}}{\sqrt {2-b x}} \, dx &=-\frac {\sqrt {x} \sqrt {2-b x}}{b}+\frac {\int \frac {1}{\sqrt {x} \sqrt {2-b x}} \, dx}{b}\\ &=-\frac {\sqrt {x} \sqrt {2-b x}}{b}+\frac {2 \text {Subst}\left (\int \frac {1}{\sqrt {2-b x^2}} \, dx,x,\sqrt {x}\right )}{b}\\ &=-\frac {\sqrt {x} \sqrt {2-b x}}{b}+\frac {2 \sin ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {2}}\right )}{b^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 56, normalized size = 1.24 \begin {gather*} -\frac {\sqrt {x} \sqrt {2-b x}}{b}+\frac {2 \log \left (-\sqrt {-b} \sqrt {x}+\sqrt {2-b x}\right )}{(-b)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x]/Sqrt[2 - b*x],x]

[Out]

-((Sqrt[x]*Sqrt[2 - b*x])/b) + (2*Log[-(Sqrt[-b]*Sqrt[x]) + Sqrt[2 - b*x]])/(-b)^(3/2)

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 67, normalized size = 1.49

method result size
meijerg \(-\frac {2 \left (-\frac {\sqrt {\pi }\, \sqrt {x}\, \sqrt {2}\, \left (-b \right )^{\frac {3}{2}} \sqrt {-\frac {b x}{2}+1}}{2 b}+\frac {\sqrt {\pi }\, \left (-b \right )^{\frac {3}{2}} \arcsin \left (\frac {\sqrt {b}\, \sqrt {x}\, \sqrt {2}}{2}\right )}{b^{\frac {3}{2}}}\right )}{\sqrt {-b}\, \sqrt {\pi }\, b}\) \(66\)
default \(-\frac {\sqrt {x}\, \sqrt {-b x +2}}{b}+\frac {\sqrt {\left (-b x +2\right ) x}\, \arctan \left (\frac {\sqrt {b}\, \left (x -\frac {1}{b}\right )}{\sqrt {-x^{2} b +2 x}}\right )}{b^{\frac {3}{2}} \sqrt {-b x +2}\, \sqrt {x}}\) \(67\)
risch \(\frac {\sqrt {x}\, \left (b x -2\right ) \sqrt {\left (-b x +2\right ) x}}{b \sqrt {-x \left (b x -2\right )}\, \sqrt {-b x +2}}+\frac {\sqrt {\left (-b x +2\right ) x}\, \arctan \left (\frac {\sqrt {b}\, \left (x -\frac {1}{b}\right )}{\sqrt {-x^{2} b +2 x}}\right )}{b^{\frac {3}{2}} \sqrt {-b x +2}\, \sqrt {x}}\) \(91\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)/(-b*x+2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-x^(1/2)*(-b*x+2)^(1/2)/b+1/b^(3/2)*((-b*x+2)*x)^(1/2)/(-b*x+2)^(1/2)/x^(1/2)*arctan(b^(1/2)*(x-1/b)/(-b*x^2+2
*x)^(1/2))

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 52, normalized size = 1.16 \begin {gather*} -\frac {2 \, \arctan \left (\frac {\sqrt {-b x + 2}}{\sqrt {b} \sqrt {x}}\right )}{b^{\frac {3}{2}}} - \frac {2 \, \sqrt {-b x + 2}}{{\left (b^{2} - \frac {{\left (b x - 2\right )} b}{x}\right )} \sqrt {x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(-b*x+2)^(1/2),x, algorithm="maxima")

[Out]

-2*arctan(sqrt(-b*x + 2)/(sqrt(b)*sqrt(x)))/b^(3/2) - 2*sqrt(-b*x + 2)/((b^2 - (b*x - 2)*b/x)*sqrt(x))

________________________________________________________________________________________

Fricas [A]
time = 1.54, size = 90, normalized size = 2.00 \begin {gather*} \left [-\frac {\sqrt {-b x + 2} b \sqrt {x} + \sqrt {-b} \log \left (-b x + \sqrt {-b x + 2} \sqrt {-b} \sqrt {x} + 1\right )}{b^{2}}, -\frac {\sqrt {-b x + 2} b \sqrt {x} + 2 \, \sqrt {b} \arctan \left (\frac {\sqrt {-b x + 2}}{\sqrt {b} \sqrt {x}}\right )}{b^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(-b*x+2)^(1/2),x, algorithm="fricas")

[Out]

[-(sqrt(-b*x + 2)*b*sqrt(x) + sqrt(-b)*log(-b*x + sqrt(-b*x + 2)*sqrt(-b)*sqrt(x) + 1))/b^2, -(sqrt(-b*x + 2)*
b*sqrt(x) + 2*sqrt(b)*arctan(sqrt(-b*x + 2)/(sqrt(b)*sqrt(x))))/b^2]

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 1.06, size = 119, normalized size = 2.64 \begin {gather*} \begin {cases} - \frac {i x^{\frac {3}{2}}}{\sqrt {b x - 2}} + \frac {2 i \sqrt {x}}{b \sqrt {b x - 2}} - \frac {2 i \operatorname {acosh}{\left (\frac {\sqrt {2} \sqrt {b} \sqrt {x}}{2} \right )}}{b^{\frac {3}{2}}} & \text {for}\: \left |{b x}\right | > 2 \\\frac {x^{\frac {3}{2}}}{\sqrt {- b x + 2}} - \frac {2 \sqrt {x}}{b \sqrt {- b x + 2}} + \frac {2 \operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {b} \sqrt {x}}{2} \right )}}{b^{\frac {3}{2}}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(1/2)/(-b*x+2)**(1/2),x)

[Out]

Piecewise((-I*x**(3/2)/sqrt(b*x - 2) + 2*I*sqrt(x)/(b*sqrt(b*x - 2)) - 2*I*acosh(sqrt(2)*sqrt(b)*sqrt(x)/2)/b*
*(3/2), Abs(b*x) > 2), (x**(3/2)/sqrt(-b*x + 2) - 2*sqrt(x)/(b*sqrt(-b*x + 2)) + 2*asin(sqrt(2)*sqrt(b)*sqrt(x
)/2)/b**(3/2), True))

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(-b*x+2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Warning, choosing root of [1,0,%%%{4,[1,
1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%
{-4,[1,2]%%%}+%%%{-28

________________________________________________________________________________________

Mupad [B]
time = 0.52, size = 46, normalized size = 1.02 \begin {gather*} -\frac {4\,\mathrm {atan}\left (\frac {\sqrt {b}\,\sqrt {x}}{\sqrt {2}-\sqrt {2-b\,x}}\right )}{b^{3/2}}-\frac {\sqrt {x}\,\sqrt {2-b\,x}}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)/(2 - b*x)^(1/2),x)

[Out]

- (4*atan((b^(1/2)*x^(1/2))/(2^(1/2) - (2 - b*x)^(1/2))))/b^(3/2) - (x^(1/2)*(2 - b*x)^(1/2))/b

________________________________________________________________________________________